

Geometry Processing and Machine Learning for Modeling and Transmission of Complex 3D Scenes

Pierre Alliez

Project-team T I T A N E Geometric Modeling of 3D Environments https://team.inria.fr/titane/

Outline

CORESA topics

- Progressive compression
- Inter-surface mapping
- Higher-order meshes

Recent and outlook

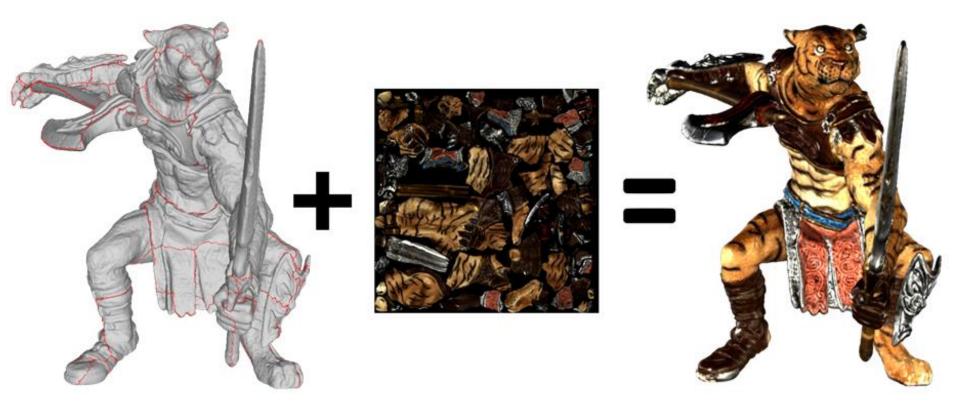
- Cognitive 3D models
- Physics-informed modeling

CORESA Topics

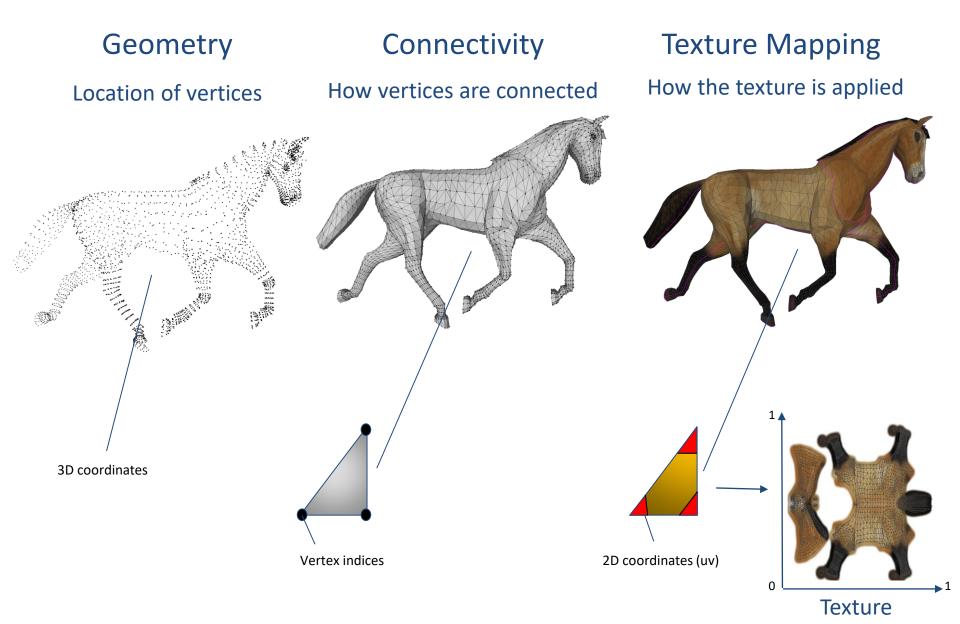
Progressive Compression

Joint work with **Cédric Portaneri**, Michael Hemmer, Lukos Birklein and Elmar Schoemer

Textured Mesh

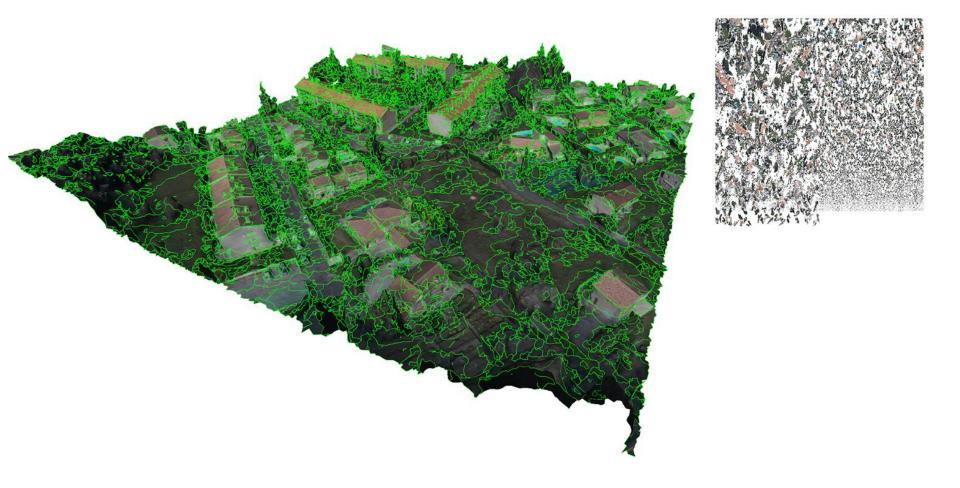


Textured Mesh Components



Context

Increasingly common: Automatically generated texture seams

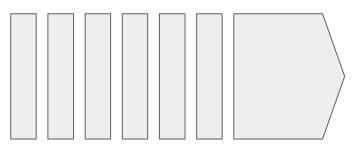


Progressive Compression

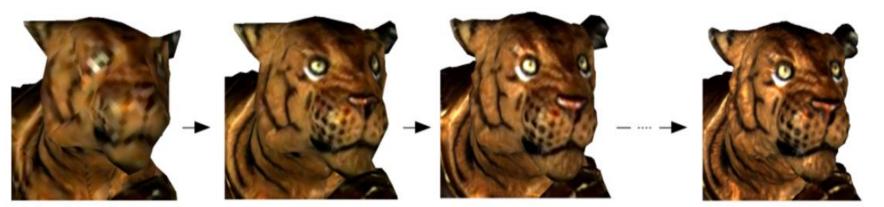
3D Model



Compression



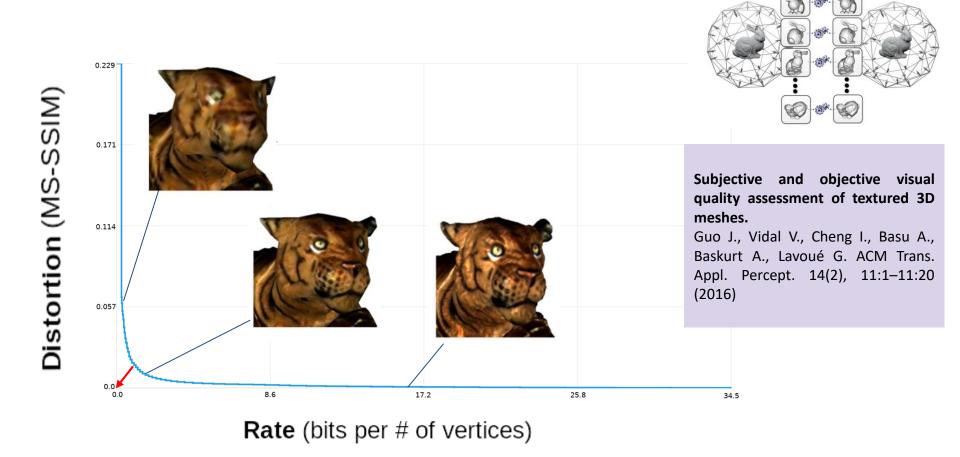
Stream of refinements



1st Level of Detail (single-rate encoded)

Progressive Compression

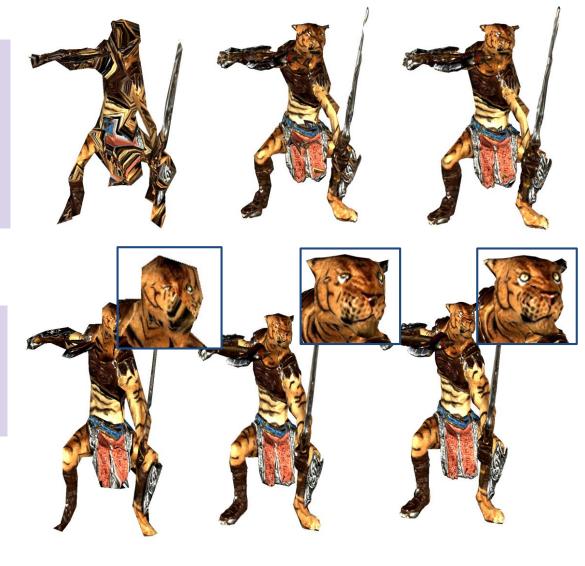
Goal: optimize rate-distortion trade-off



Previous Work

Progressive Streaming of Textured 3D Models in a Web Browser. Lavoué et al. In Proceedings of the 20th ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2016

Progressive Compression of Arbitrary Textured Meshes. Caillaud, Vidal, Dupont, Lavoué. Computer Graphics Forum (Pacific Graphics), 2016.



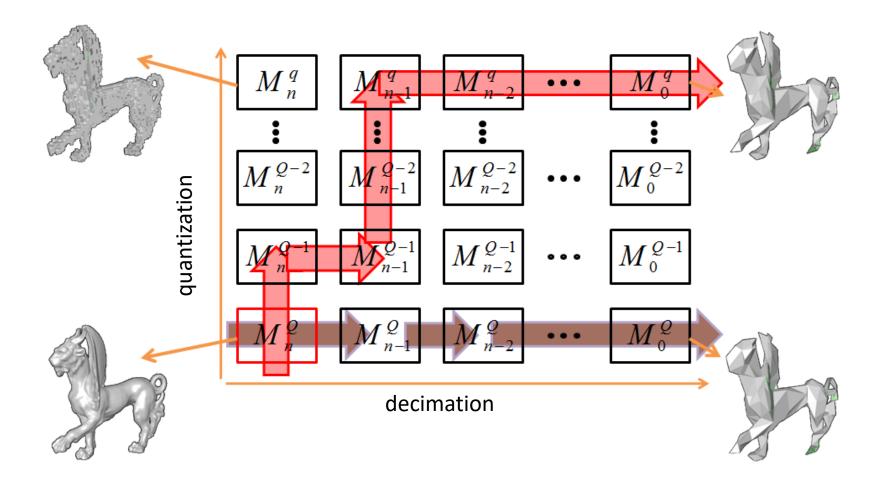
Global Quantization

Input mesh

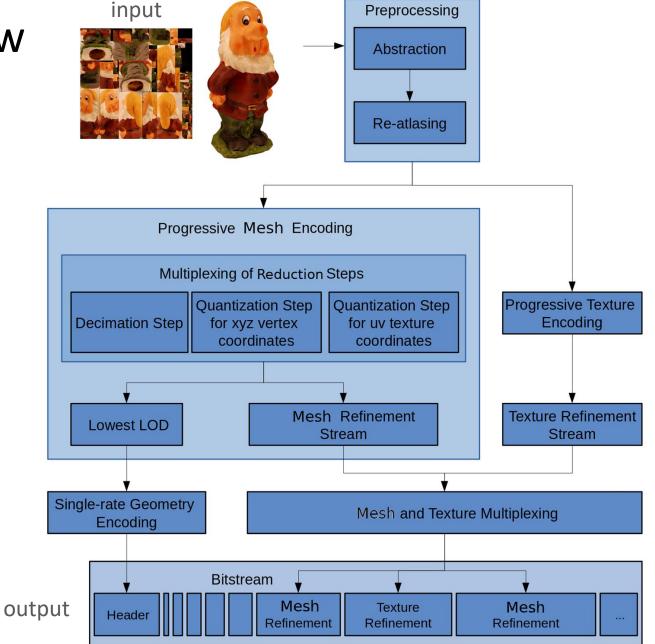
14 bits quantization on geometry 6 bits quantization on geometry

6 bits quantization on texture mapping

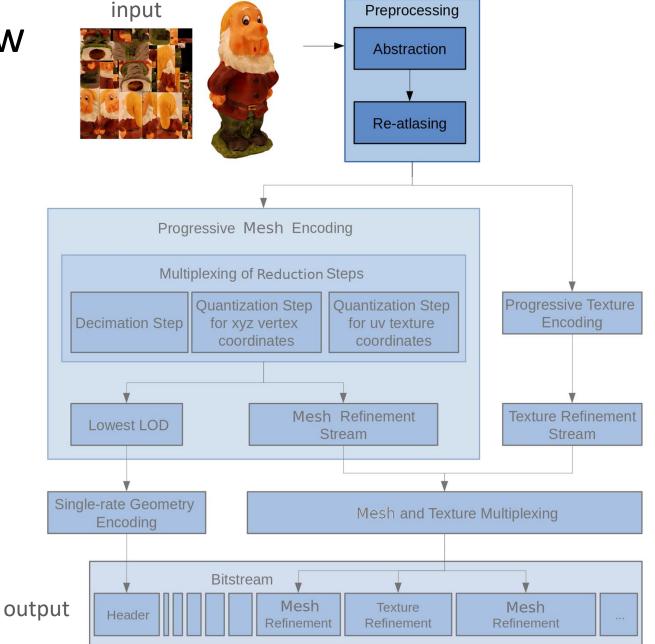
Adaptive Quantization [Lee, Lavoué, Dupont 09]



Overview

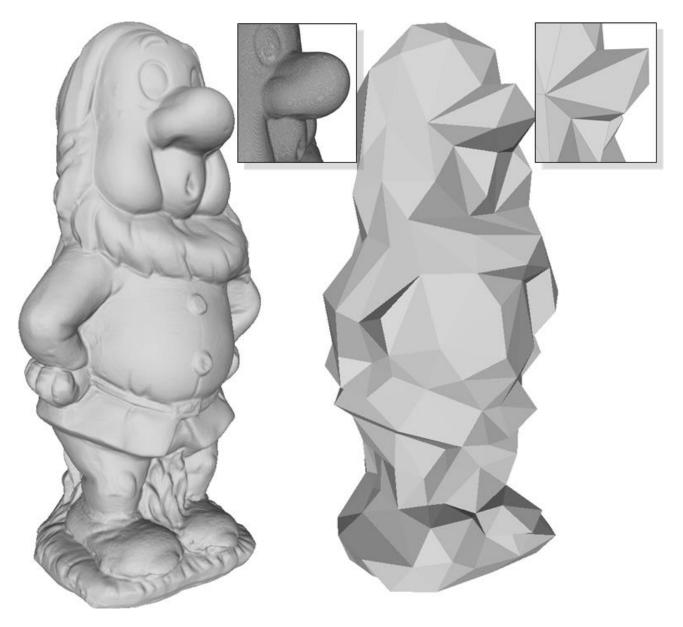


Overview

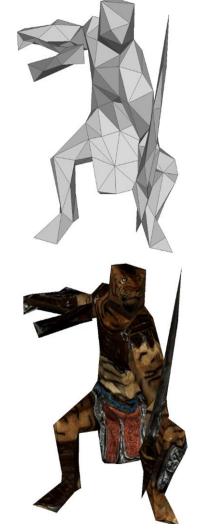


Preprocessing

Abstraction

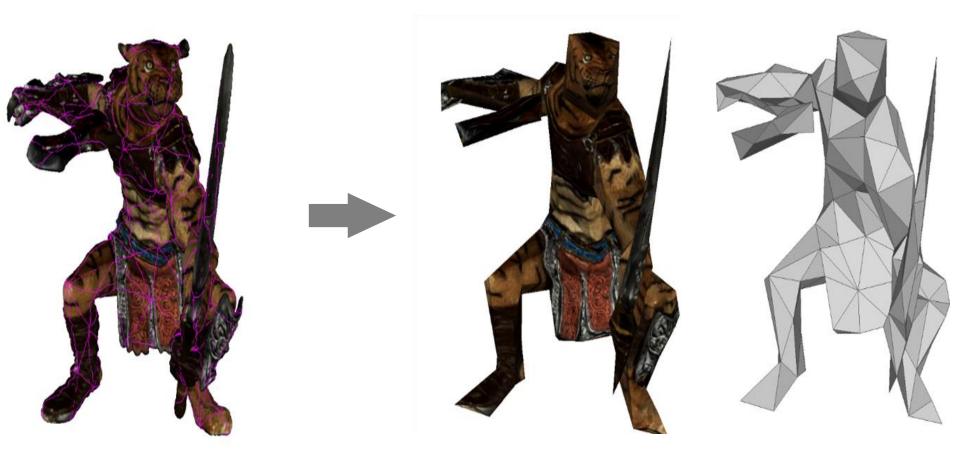


Preprocessing



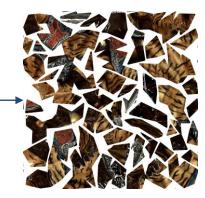
Decimation toward Abstraction

Seam-preserving simplification



Re-atlasing Steps



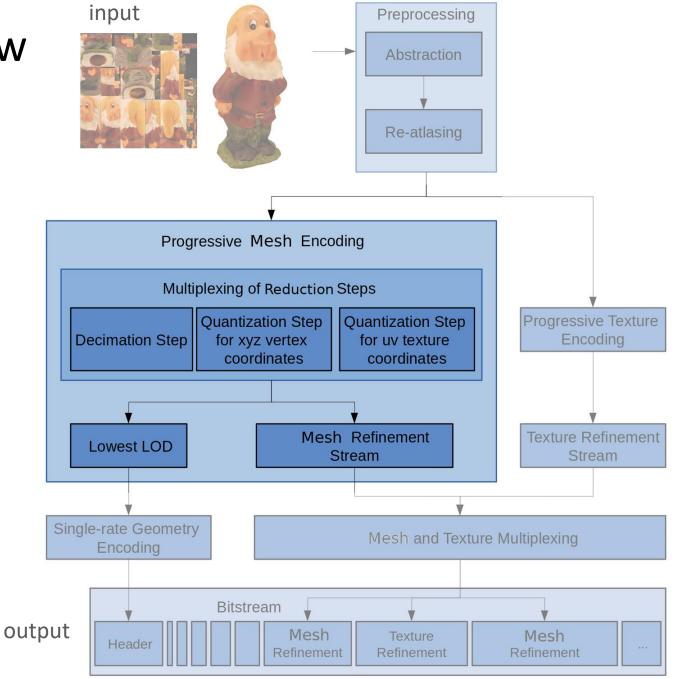


1. Cluster input triangles onto 2. Form a texture patch by abstraction triangle

planar parameterization

3. Pack the texture patches. Glue texture seams and save them as virtual seams

Overview

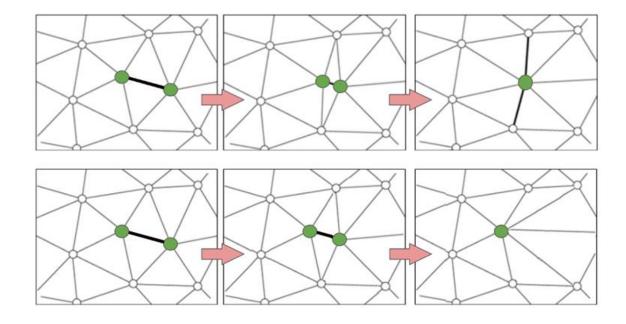


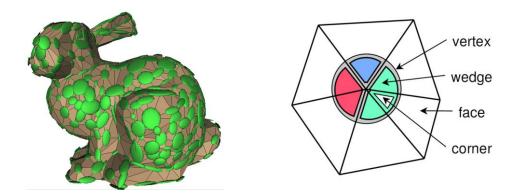
Decimation Operators

Full-edge collapse

Half-edge collapse

(cheaper to encode)

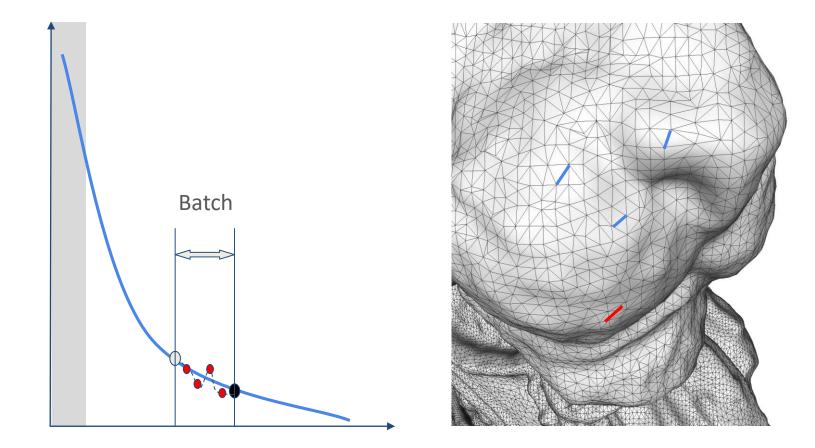




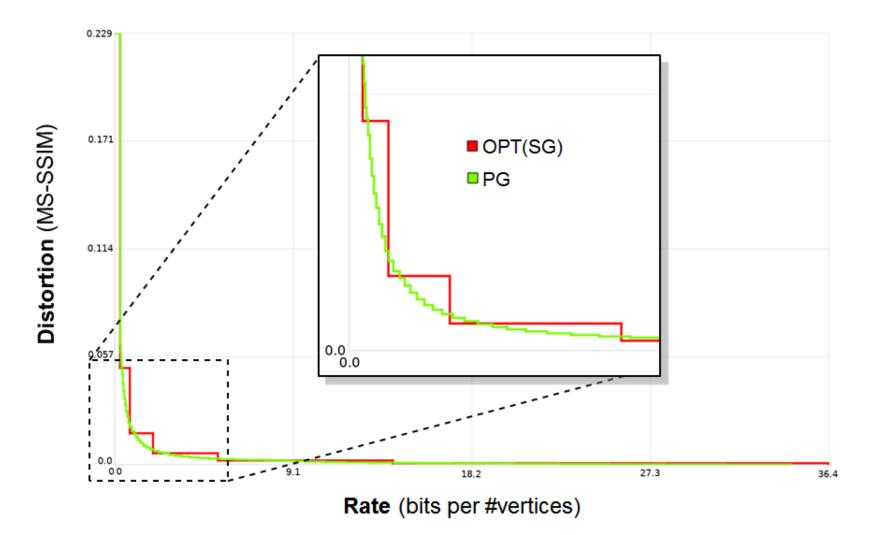
5D Quadric Error Metric

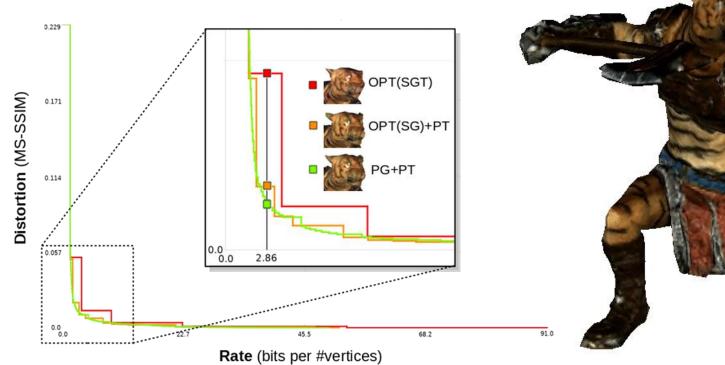
Decimation

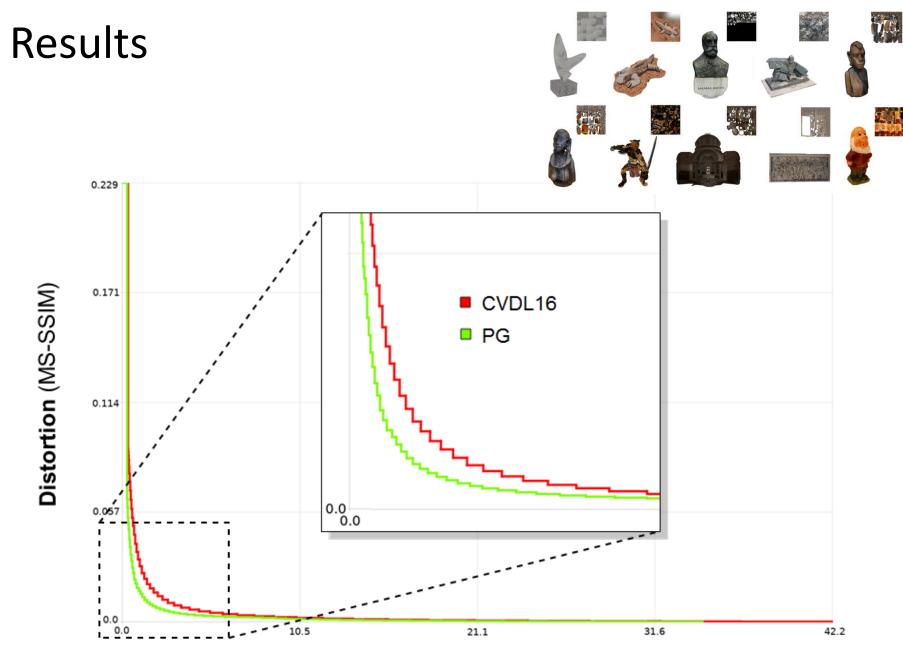
Order of decimation operator



Results





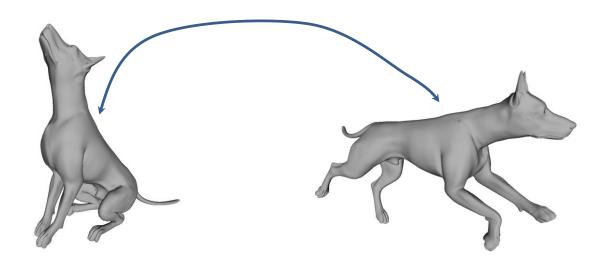


Rate (bits per #vertices)

Inter-surface mapping

Joint work with Manish Mandad, David Cohen-Steiner, Leif Kobbelt, and Mathieu Desbrun

Problem Statement



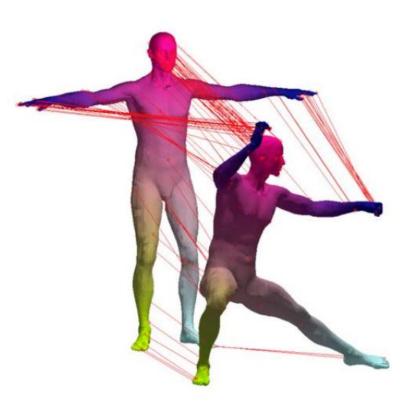
Find mapping between two surfaces

- Bijective
- Some degree of regularity
- Semantically meaningful

Inter-Surface Mapping

Used for:

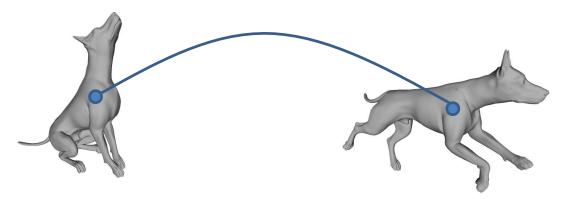
- Template fitting
- Detail or attribute transfer
- Blending
- Morphing
- Surface reconstruction
- Remeshing



Homeomorphism?

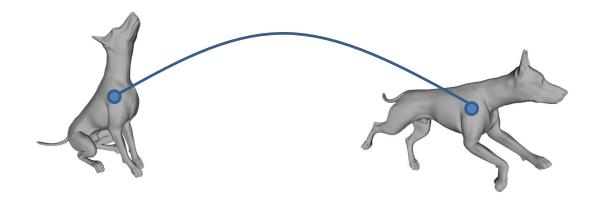
- Bi-continuous function between topological spaces
- « continuous stretching and bending of the object into a new shape»

• Neighborhoods map to neighborhoods



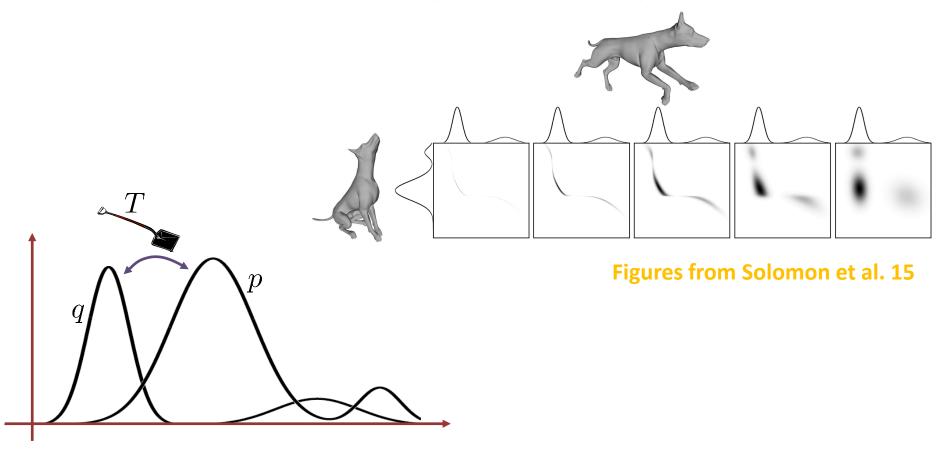
Homeomorphism?

• Geodesic neighbourhoods map to small geodesic neighbourhoods



Proposal

Formulation based on **Optimal Transportation**

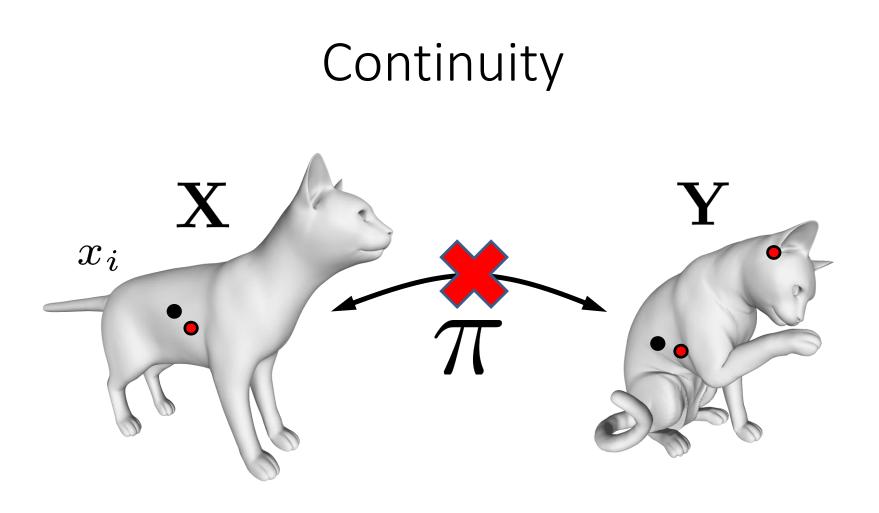


Formulation

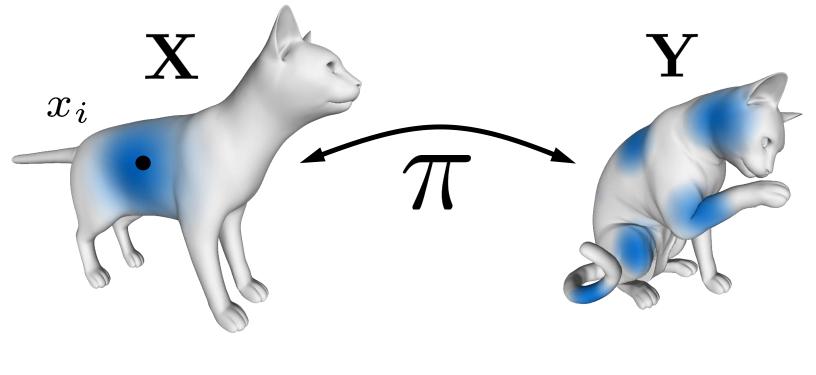
- Minimize variances of images of neighborhoods by the transport plan.
- Penalizes stretching and favors point-to-point homeomorphisms.

weighting function

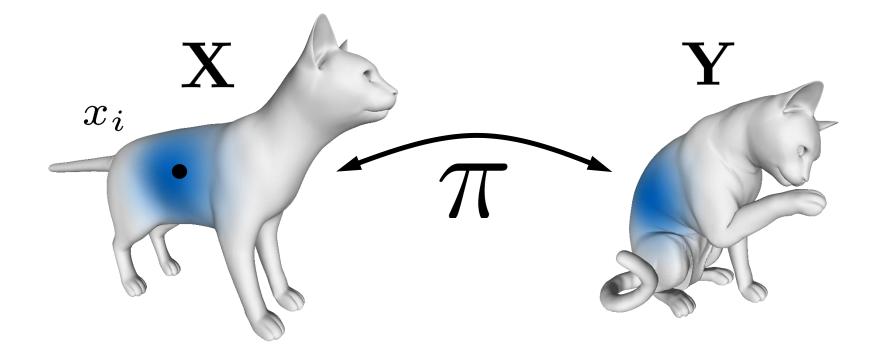
$$E(\pi) = \int_{\mathbf{X}} \operatorname{var} \pi_{\mathbf{X}} \left(\frac{W_x \mu}{\operatorname{mass}(W_x \mu)} \right) d\mu(x) \xrightarrow{\mu}_{\mathbf{X}} \underbrace{| \bigcup_{\mathbf{X}} \psi_{\mathbf{X}} \psi_{\mathbf$$



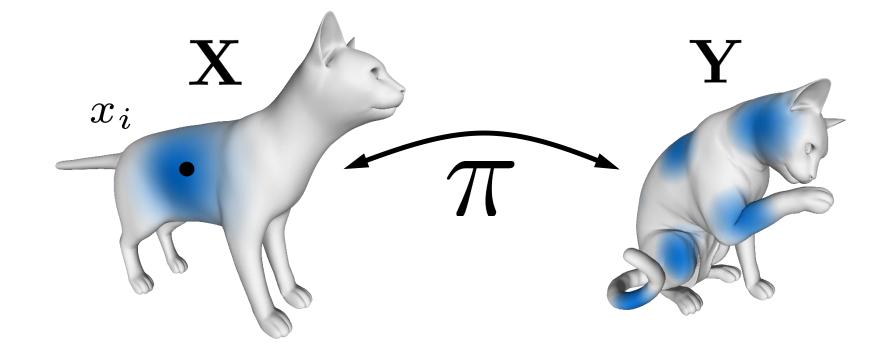
"Neighborhood maps to neighborhood"



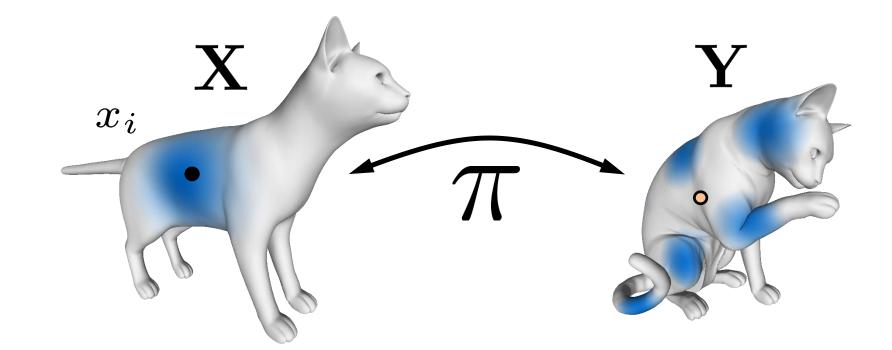
 μ



 $\mathcal{C}(\pi) = \sum_{\mathbf{X}} \operatorname{var}\left(\pi\left(W_{x_i}\mu\right)\right)$

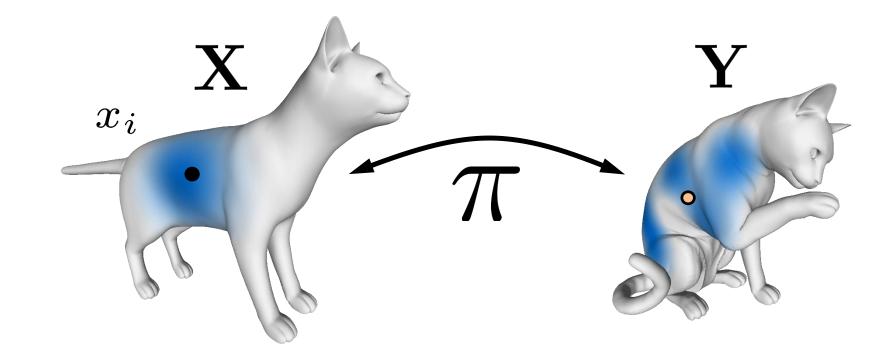


 $\mathcal{C}(\pi) = \sum_{\mathbf{X}} \operatorname{var}\left(\pi\left(W_{x_i}\mu\right)\right)$



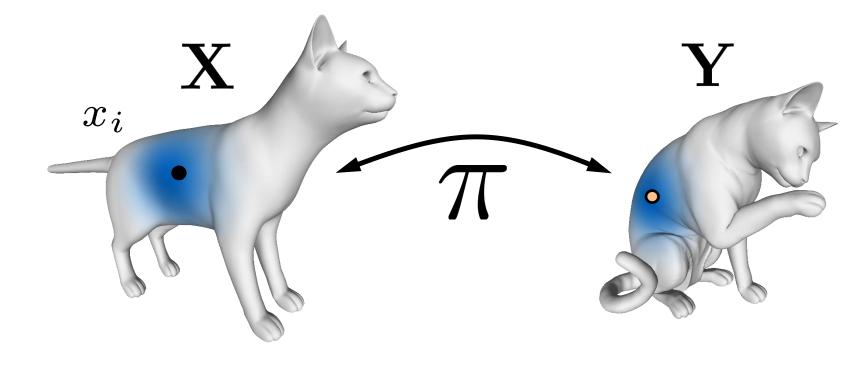
 $\mathcal{C}(\pi,\eta) = \sum_{\mathbf{X}} \operatorname{var}\left(\pi\left(W_{x_i}\mu\right),\eta_{x_i}\right)$

Cost Function

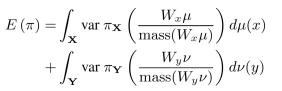


 $\mathcal{C}(\pi,\eta) = \sum_{\mathbf{X}} \operatorname{var}\left(\pi\left(W_{x_i}\mu\right),\eta_{x_i}\right)$

Cost Function



 $\mathcal{C}(\pi,\eta) = \sum_{\mathbf{X}} \operatorname{var}\left(\pi\left(W_{x_i}\mu\right),\eta_{x_i}\right)$



Non-convex!

Reformulation with auxiliary variables. Given a measure $\mu = \sum \mu_i \delta_{x_i}$ and a point x, we denote by $var(\mu, x)$ its variance with respect to x:

$$\operatorname{var}(\mu, x) = \sum \mu_i d(x_i, x)^2, \tag{2}$$
geodesic barycenter

Algorithm 1 Map optimization through alternating minimization

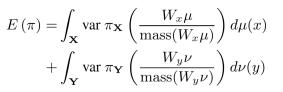
1: function Alternating Minimization

2: **for**
$$i = 1, 2, 3...$$
 do

3:
$$\eta \leftarrow \min C(\pi, \cdot) // \text{ move centers to geodesic barycenters}$$

4:
$$\pi \leftarrow \min C(\bullet, \eta) // solve optimal transport problem$$

5: **return** π \triangleright variance-minimizing transport plan

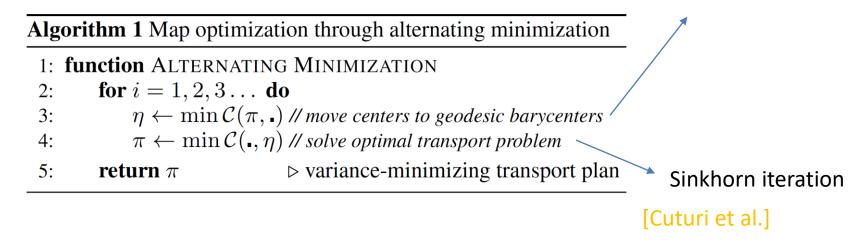


Non-convex!

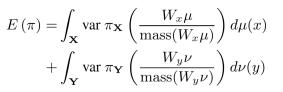
Reformulation with auxiliary variables. Given a measure $\mu = \sum \mu_i \delta_{x_i}$ and a point x, we denote by $var(\mu, x)$ its variance with respect to x:

$$\operatorname{var}(\mu, x) = \sum \mu_i d(x_i, x)^2, \qquad (2)$$
geodesic barycenter

in diffusion space

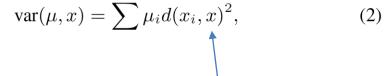


geodesic barycenter



Non-convex!

Reformulation with auxiliary variables. Given a measure $\mu = \sum \mu_i \delta_{x_i}$ and a point x, we denote by $var(\mu, x)$ its variance with respect to x:



Coarse to fine

3:

4:

in diffusion space

Algorithm 1 Map optimization through alternating minimization

1: function Alternating Minimization

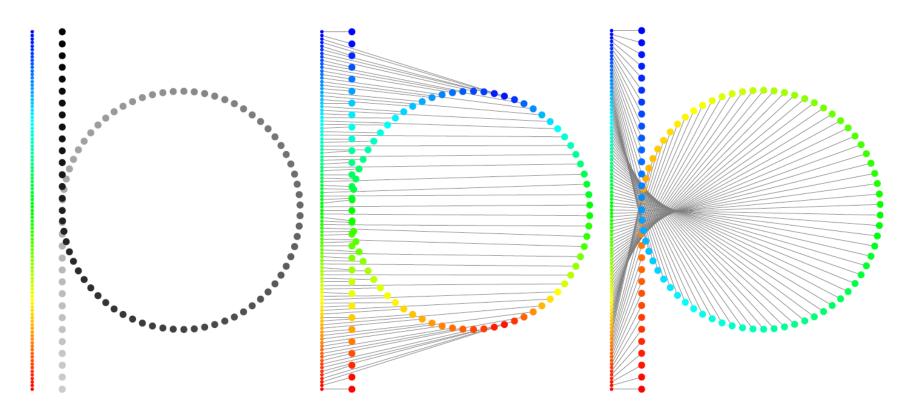
2: **for**
$$i = 1, 2, 3...$$
 do

$$\eta \leftarrow \min C(\pi, .)$$
 // move centers to geodesic barycenters

 $\pi \gets \min \mathcal{C}(\centerdot,\eta)$ // solve optimal transport problem $\, \sim \,$

5: return π > variance-minimizing transport plan

Sinkhorn iteration

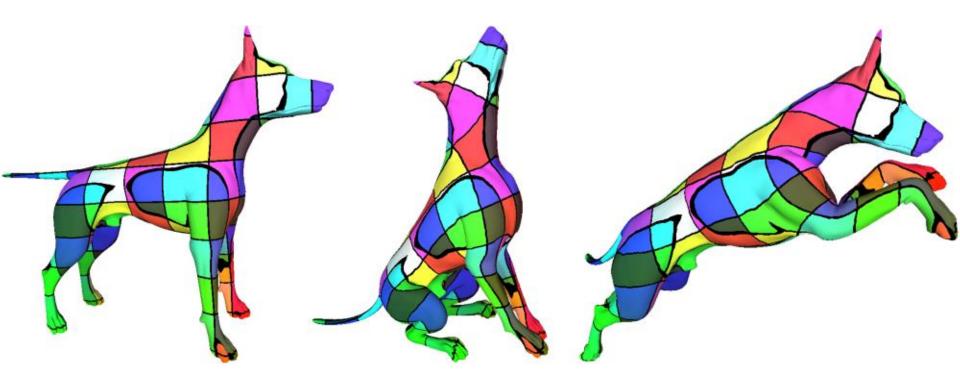


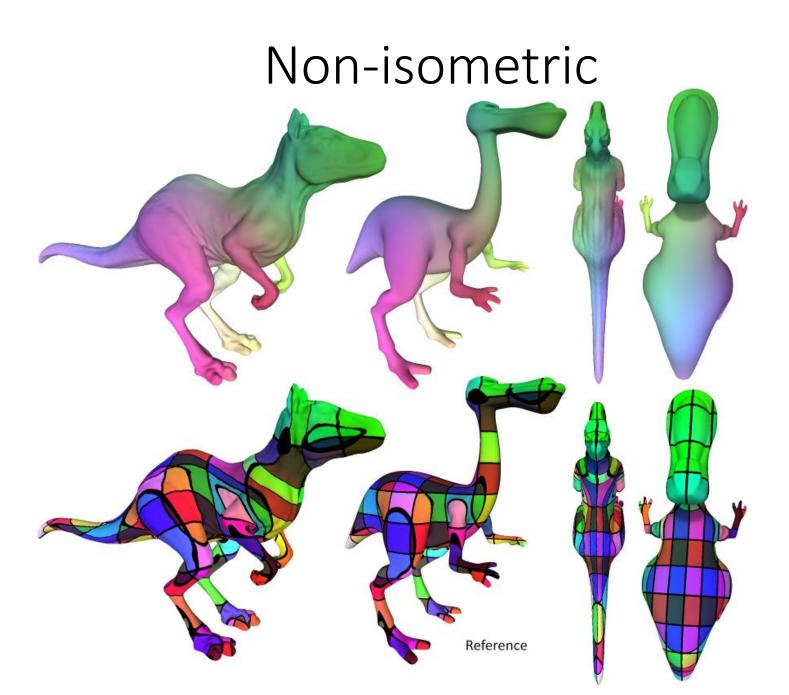
Input

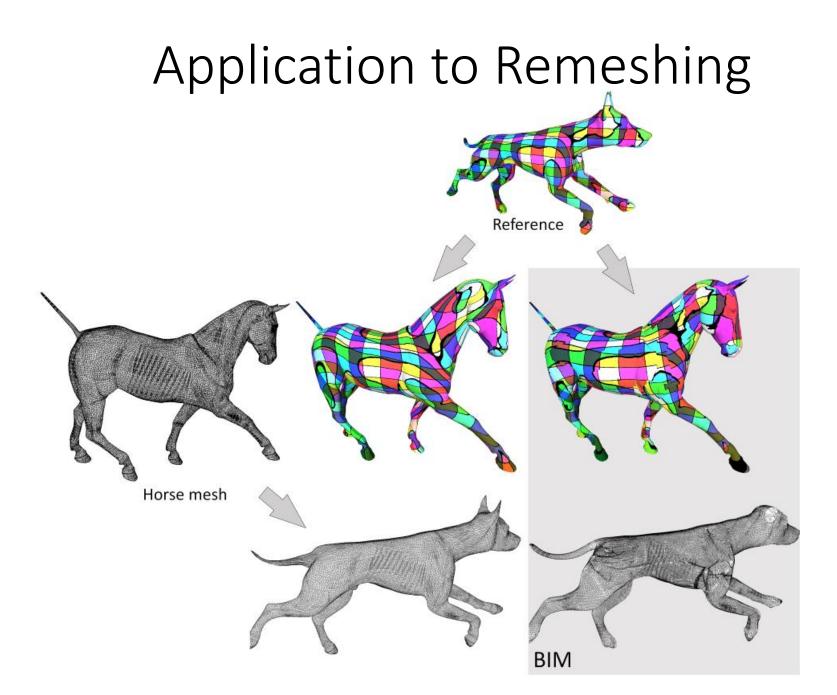
Initial map (nearest)

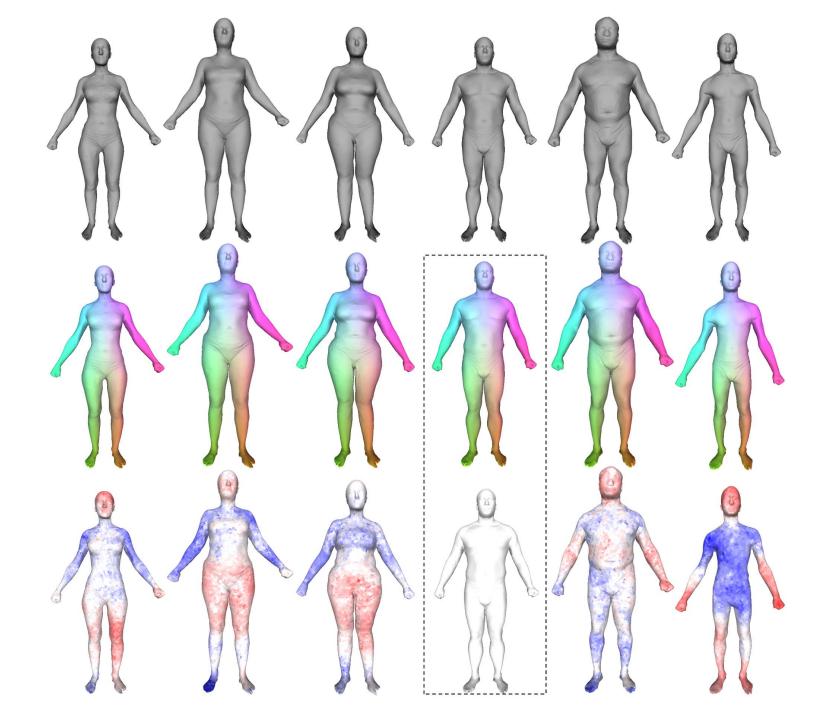
EM iterations

Isometric case

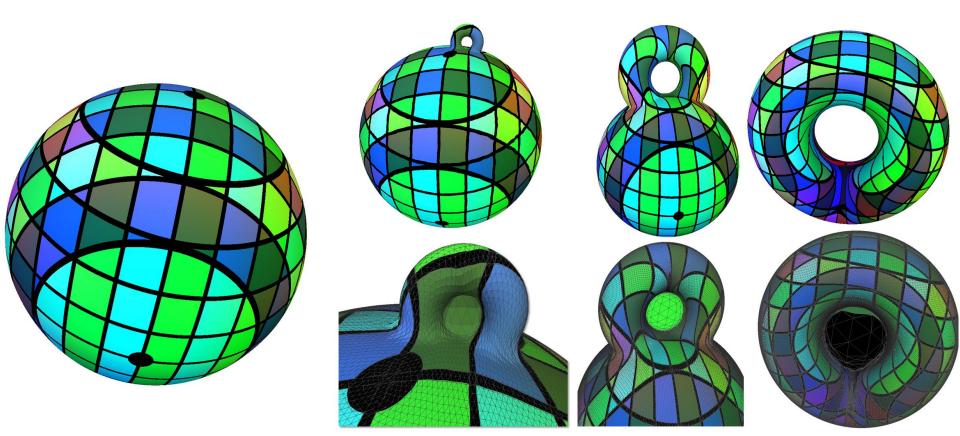








Resilience to Topological Noise



Higher-order Meshes

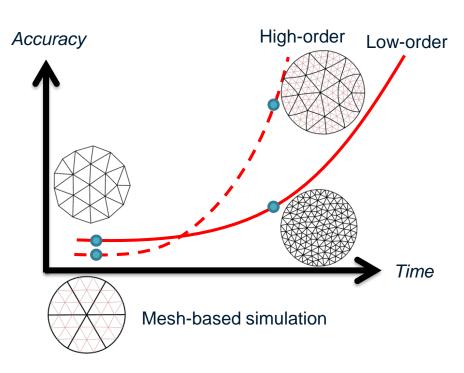
Joint work with **Leman Feng**, Laurent Busé, Hervé Delingette and Mathieu Desbrun

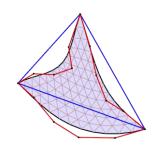
Motivations

Simulation of laparoscopic liver surgery

Meshing = essential preprocessing step

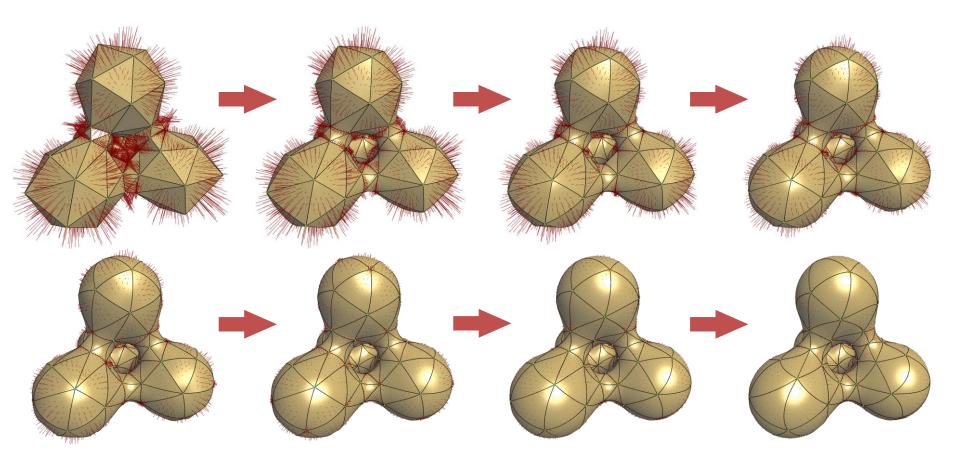
- Curved domains and complex phenomena motivate higherorder elements & basis functions [Roth '98, Weber '11, Suwelack '13, Geuzaine '15]
- Smaller element count.





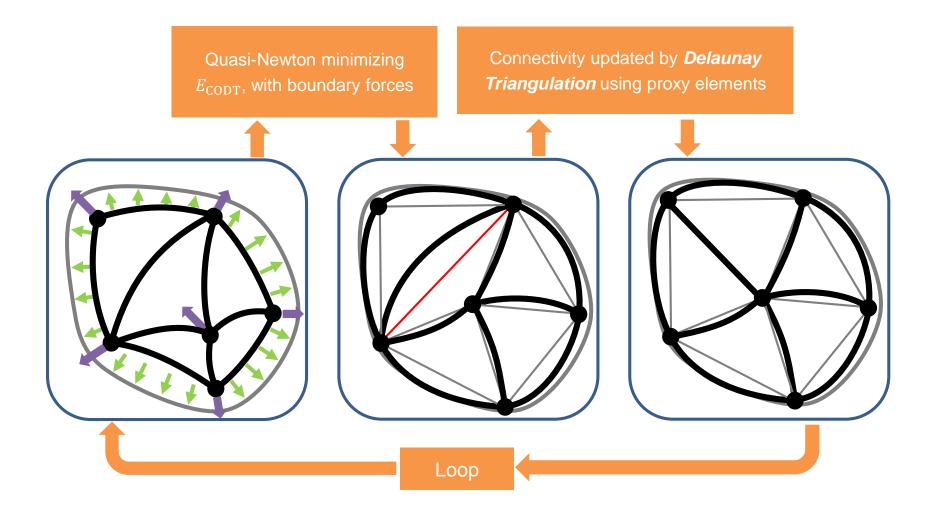
Higher-order Meshing

Bézier element

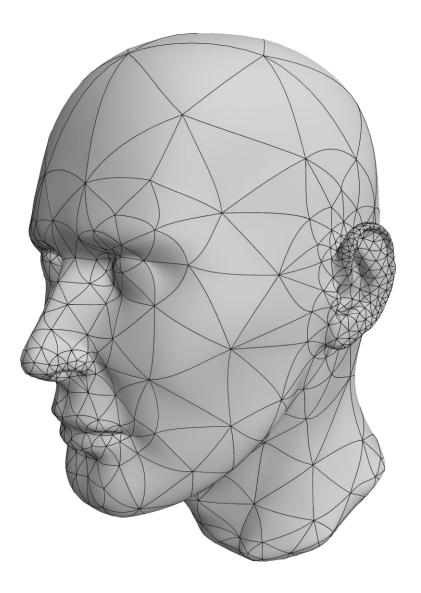


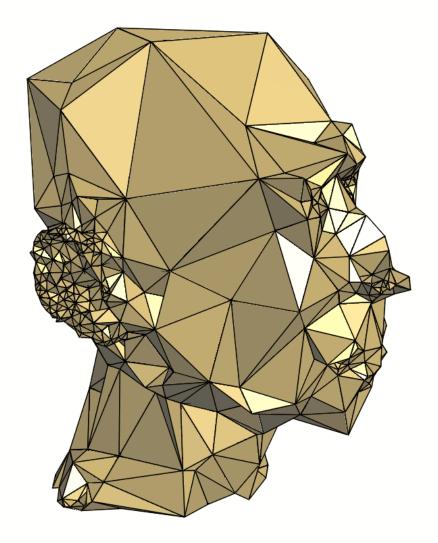
200 vertices, cubic patches

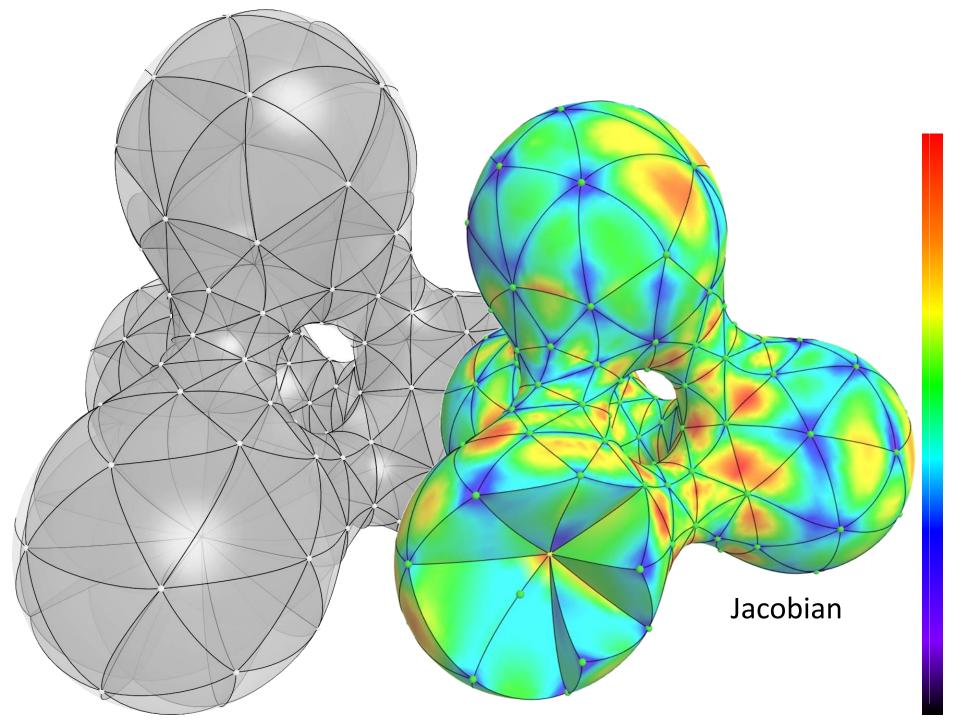
Algorithm



Algorithm



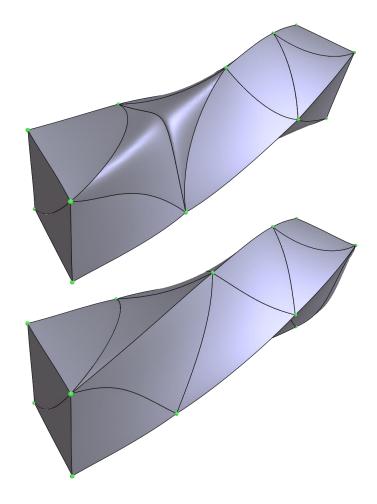




On-going Work

 Sharp features & boundaries

- H/P dilemma
 - Order vs element size
 - Learn prediction



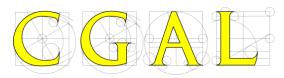
Toolbox

Methodological Keywords

Computational geometry

- Delaunay-Voronoi
- Kinetic data structures

Geometric computing



Applied mathematics

- Variational formulations
- Optimal transportation

Stochastic geometry

- Spatial point processes
- Monte Carlo sampling

Machine learning

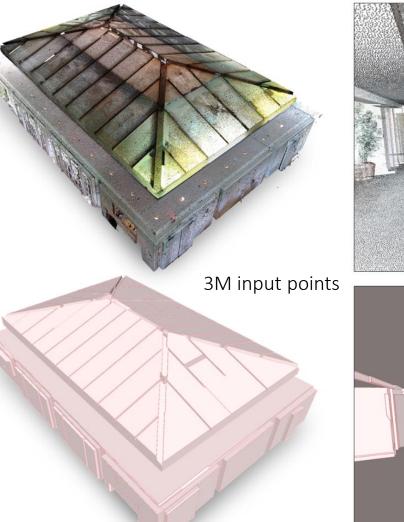
- Support vector machines
- Random forests
- Deep neural networks

• ...

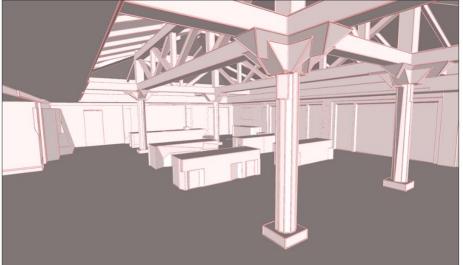
Recent and Outlook

Cognitive 3D models

3D Reconstruction...

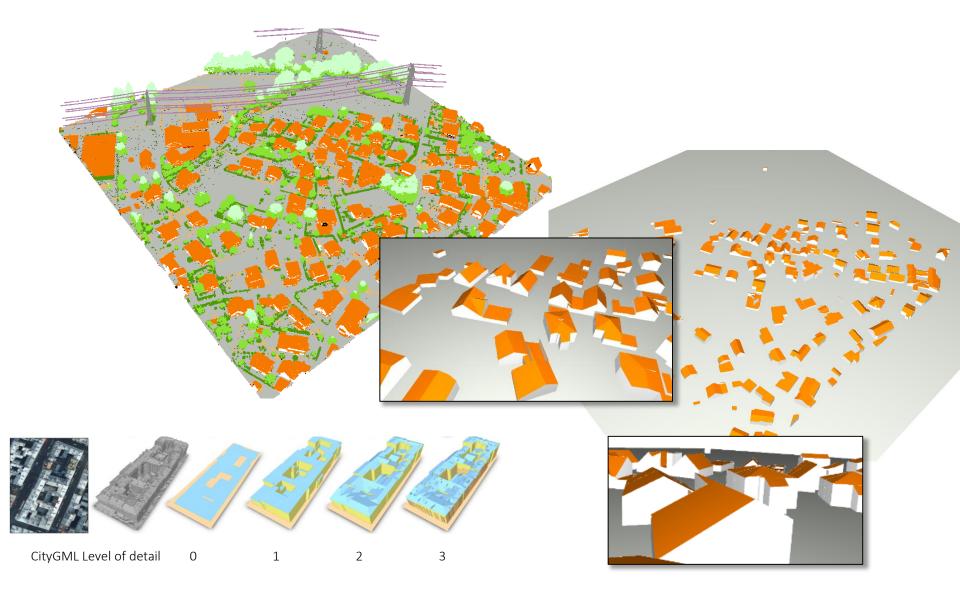


1.5K facets

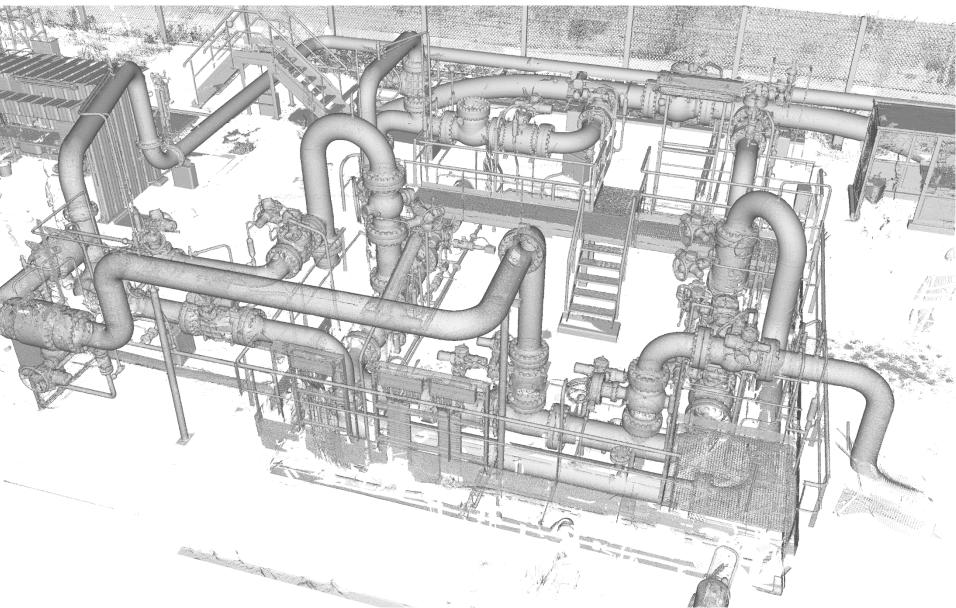


[Bauchet-Lafarge 2020]

...and Support of Domain Knowledge



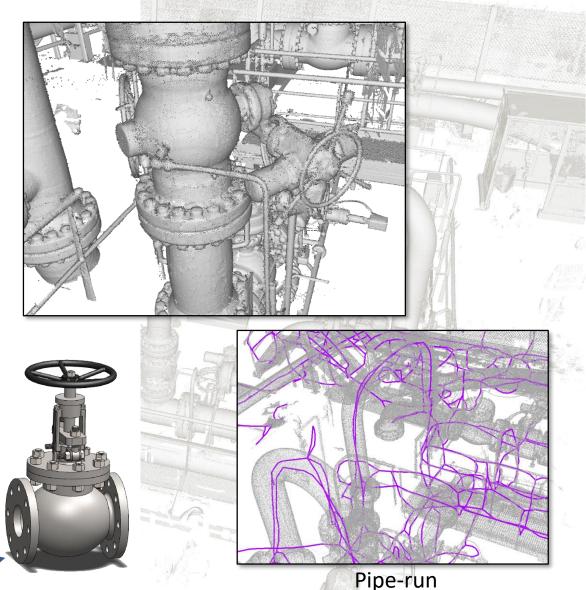
Raw Point Cloud...



...and Cognitive 3D Model

Cognitive:

- Searchable
- Insights from digital realities
 - Abstraction
 - Detection
 - Segmentation
 - Domain-specific queries



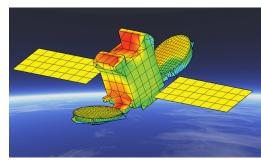
Recent and Outlook

Physics-informed modeling

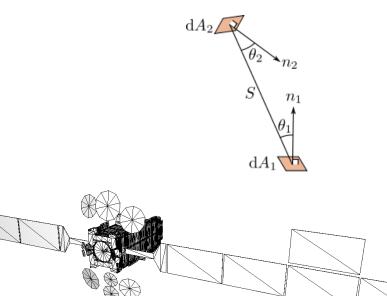
Radiative Thermal Simulation

Goals

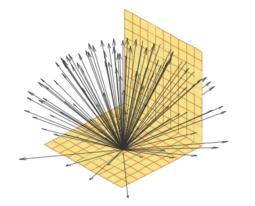
- View factors
- Thermal-aware geometric approximation
- Trade accuracy for time
- Guarantees: error bounds
 - under wide range of configurations and conditions

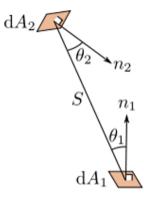


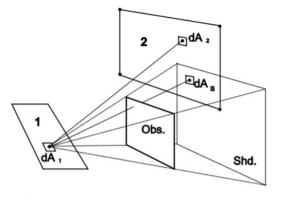
Vincent Vadez

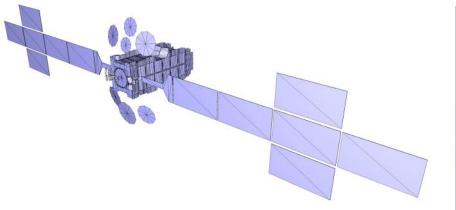


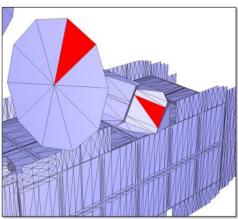
Geometric View Factors





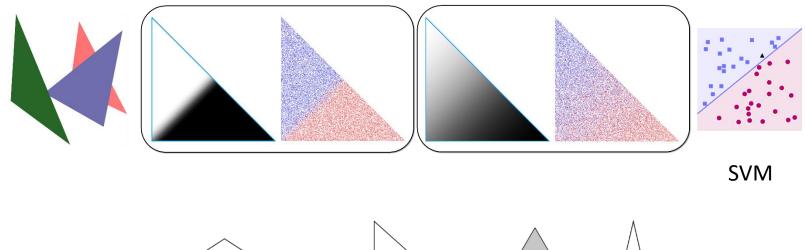


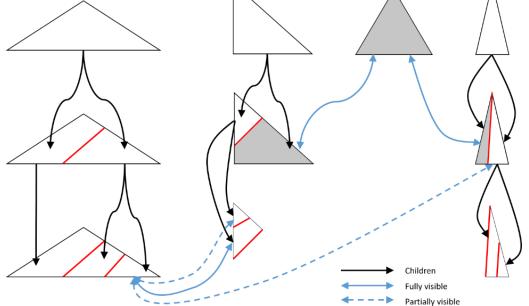




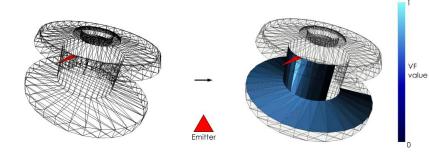


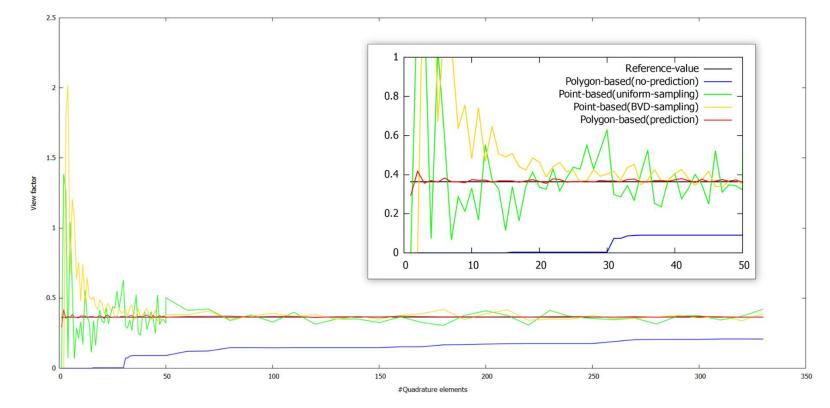
Progressive View Factors



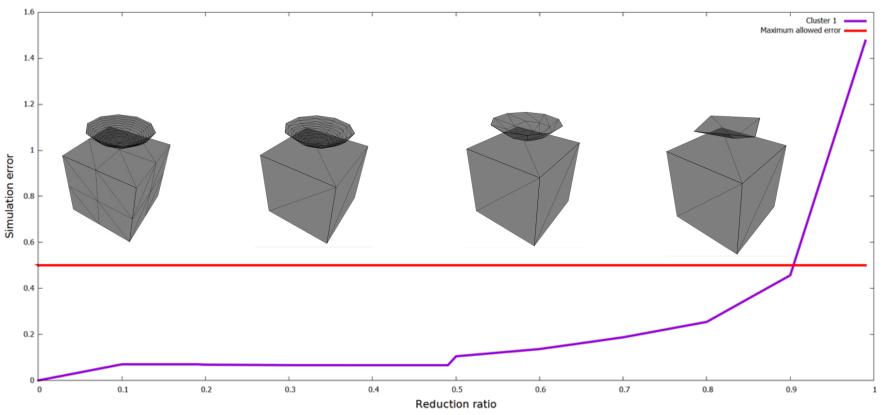


Predicting Geometric View Factors

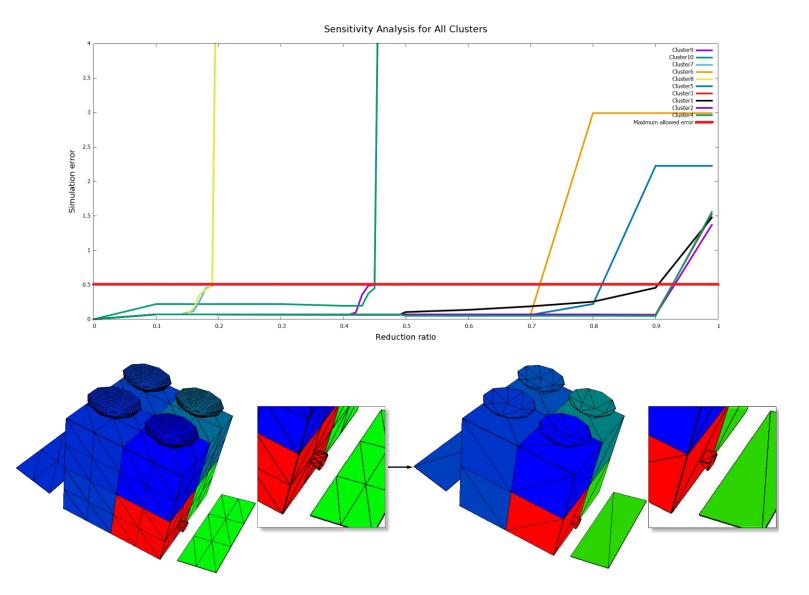




Physics-informed Mesh Reduction



Physics-informed Mesh Reduction

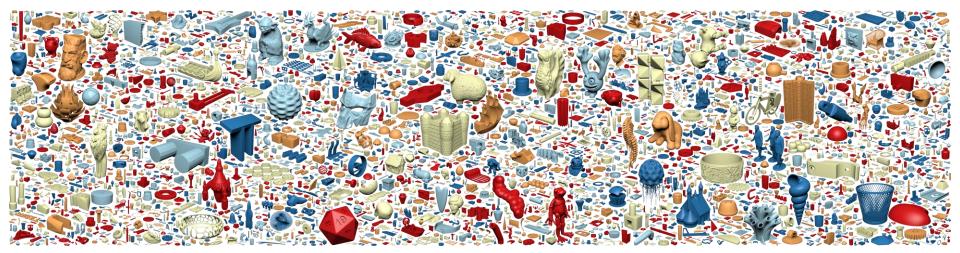


On-Going Work

- Learn physics-informed error metric
- Physics-informed 3D reconstruction

Physics-informed Modeling

- Improve discretizations
 - Simulation = discrete differential operators
 - Operator-specific mesh optimization



Training data

Thank you.

Funding

(nría_

Consolidator Grant "IRON" **EFC** Robust Geometry Processing Proof of Concept "TITANIUM"

Institut interdisciplinaire d'intelligence artificielle

